271 research outputs found

    From presence to consciousness through virtual reality

    Get PDF
    Immersive virtual environments can break the deep, everyday connection between where our senses tell us we are and where we are actually located and whom we are with. The concept of 'presence' refers to the phenomenon of behaving and feeling as if we are in the virtual world created by computer displays. In this article, we argue that presence is worthy of study by neuroscientists, and that it might aid the study of perception and consciousness

    Influence of social support on cognitive function in the elderly

    Get PDF
    BACKGROUND: Social support is important in daily activities of the elderly. This study tests the hypothesis that there is an association between social support and cognitive function among the elderly in a community setting. METHODS: Face-to-face interviews were conducted in a cross-sectional stratified random sample of 4,993 elderly (≥65 years) city residents. Using multiple regression analysis, we investigated the influence of social support on cognitive function. RESULTS: 12% were over 80 years old. 53.28% were men. 67.14% were married. Higher Short Portable Mental Status Questionnaire (SPMSQ) scores (higher score means better cognitive function) were associated with strong social support, as measured by marital status and perceived positive support from friends. Lower cognitive function was associated with older and with female respondents. Only instrumental activities of daily living (IADL) were statistically and negatively related to SPMSQ. Lower functional status was associated with lower cognitive function. Elders with grade school educations had lower SPMSQ scores than did elders with high school educations. CONCLUSIONS: In Taiwan, higher cognitive function in community-living elderly was associated with increased social support. Life-style management should provide social activities for the elderly to promote a better quality of life

    Genome analysis and comparative genomics of a Giardia intestinalis assemblage E isolate

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Giardia intestinalis </it>is a protozoan parasite that causes diarrhea in a wide range of mammalian species. To further understand the genetic diversity between the <it>Giardia intestinalis </it>species, we have performed genome sequencing and analysis of a wild-type <it>Giardia intestinalis </it>sample from the assemblage E group, isolated from a pig.</p> <p>Results</p> <p>We identified 5012 protein coding genes, the majority of which are conserved compared to the previously sequenced genomes of the WB and GS strains in terms of microsynteny and sequence identity. Despite this, there is an unexpectedly large number of chromosomal rearrangements and several smaller structural changes that are present in all chromosomes. Novel members of the VSP, NEK Kinase and HCMP gene families were identified, which may reveal possible mechanisms for host specificity and new avenues for antigenic variation. We used comparative genomics of the three diverse <it>Giardia intestinalis </it>isolates P15, GS and WB to define a core proteome for this species complex and to identify lineage-specific genes. Extensive analyses of polymorphisms in the core proteome of <it>Giardia </it>revealed differential rates of divergence among cellular processes.</p> <p>Conclusions</p> <p>Our results indicate that despite a well conserved core of genes there is significant genome variation between <it>Giardia </it>isolates, both in terms of gene content, gene polymorphisms, structural chromosomal variations and surface molecule repertoires. This study improves the annotation of the <it>Giardia </it>genomes and enables the identification of functionally important variation.</p

    MicroRNA-34a Inhibits the Proliferation and Metastasis of Osteosarcoma Cells Both In Vitro and In Vivo

    Get PDF
    BACKGROUND: MicroRNAs (miRNAs) are a class of endogenously expressed, small noncoding RNAs, which suppress its target mRNAs at the post-transcriptional level. Studies have demonstrated that miR-34a, which is a direct target of the p53 tumor suppressor gene, functions as a tumor suppressor and is associated with the tumor growth and metastasis of various human malignances. However, the role of miR-34a in osteosarcoma has not been totally elucidated. In the present study, the effects of miR-34a on osteosarcoma and the possible mechanism by which miR-34a affected the tumor growth and metastasis of osteosarcoma were investigated. METHODOLOGY/PRINCIPAL FINDING: Over-expression of miR-34a partially inhibited proliferation, migration and invasion of osteosarcoma cells in vitro, as well as the tumor growth and pulmonary metastasis of osteosarcoma cells in vivo. c-Met is a target of miR-34a, and regulates the migration and invasion of osteosarcoma cells. Osteosarcoma cells over-expressing miR-34a exhibited a significant decrease in the expression levels of c-Met mRNA and protein simultaneously. Finally, the results from bioinformatics analysis demonstrated that there were multiple putative targets of miR-34a that may be associated with the proliferation and metastasis of osteosarcoma, including factors in Wnt and Notch signaling pathways. CONCLUSION/SIGNIFICANCE: The results presented in this study demonstrated that over-expression of miR-34a could inhibit the tumor growth and metastasis of osteosarcoma probably through down regulating c-Met. And there are other putative miR-34a target genes beside c-Met which could potentially be key players in the development of osteosarcoma. Since pulmonary metastases are responsible for mortality of patient carrying osteosarcoma, miR-34a may prove to be a promising gene therapeutic agent. It will be interesting to further investigate the mechanism by which miR-34a functions as a tumor suppressor gene in osteosarcoma

    CDK5 Is Essential for Soluble Amyloid β-Induced Degradation of GKAP and Remodeling of the Synaptic Actin Cytoskeleton

    Get PDF
    The early stages of Alzheimer's disease are marked by synaptic dysfunction and loss. This process results from the disassembly and degradation of synaptic components, in particular of scaffolding proteins that compose the post-synaptic density (PSD), namely PSD95, Homer and Shank. Here we investigated in rat frontal cortex dissociated culture the mechanisms involved in the downregulation of GKAP (SAPAP1), which links the PSD95 complex to the Shank complex and cytoskeletal structures within the PSD. We show that Aβ causes the rapid loss of GKAP from synapses through a pathway that critically requires cdk5 activity, and is set in motion by NMDAR activity and Ca2+ influx. We show that GKAP is a direct substrate of cdk5 and that its phosphorylation results in polyubiquitination and proteasomal degradation of GKAP and remodeling (collapse) of the synaptic actin cytoskeleton; the latter effect is abolished in neurons expressing GKAP mutants that are resistant to phosphorylation by cdk5. Given that cdk5 also regulates degradation of PSD95, these results underscore the central position of cdk5 in mediating Aβ-induced PSD disassembly and synapse loss

    Antibacterial activity of sucralfate versus aluminum chloride in simulated gastric fluid

    Full text link
    Studies have previously demonstrated that sucralfate possesses intrinsic antibacterial activity. This study was designed to indirectly assess whether aluminum is the active antibacterial component of sucralfate and to further evaluate factors that may influence this agent's antibacterial activity. Utilizing an in vitro model, the antibacterial activity of sucralfate, an equivalent quantity of aluminum in the form of aluminum chloride, and a control were compared. In addition, the influences of bacterial species ( Enterobacter cloacae and Pseudomonas aeruginosa ), time (0–24 h) and environmental pH (3, 5, 7) on the agents' antibacterial activities were evaluated. Equivalent quantities of aluminum, as either sucralfate or aluminum chloride, were added to two of three flasks containing approximately 10 5 cfu/ml of bacteria in pH-adjusted simulated gastric fluid. The third flask served as a control. Samples were obtained over 24 h, diluted and subcultured onto agar plates. The experiments demonstrated that bacterial growth was influenced by pH, time and treatment (aluminum chloride or sucralfate). Regardless of pH or bacterial species, bacterial death occurred within 20 min following the addition of aluminum chloride. In contrast, bacterial death following the addition of sucralfate was more variable and appeared to be pH dependent. In conclusion, sucralfate and aluminum chloride both possess antibacterial activity, even at pH values that normally support bacterial growth in gastric fluid. Although differences in the antibacterial activity of the two agents may in part be related to drug-induced changes in pH, these differences also support data suggesting that aluminum release from sucralfate is incomplete and is dependent on pH.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47895/1/10096_2005_Article_BF02111825.pd
    corecore